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Abstract
When sending unknown direction information, antiparallel spins contain more
direction information than parallel spins (Gisin and Popescu 1999 Phys. Rev.
Lett. 83 432). In this paper, the optimal information–disturbance tradeoff bound
for antiparallel spins is derived. The quantum measurements which attain the
optimal tradeoff bound are obtained. This result can be of practical relevance
for posing some general limits on Eve’s eavesdropping process. Finally,
we also present a comparison between the bound for antiparallel spins and
the bound for parallel spins.

PACS numbers: 03.67.−a, 03.65.Ta

(Some figures in this article are in colour only in the electronic version)

1. Introduction

With a pre-established reference frame between two remote users, Alice and Bob, an unknown
direction information �n can be encoded with a series of classical bits and can then be exchanged
conveniently via quantum or classical channels. However, there are many cases when such a
reference frame is not available and all that we can do is to send a natural object, such as a
gyroscope pointing in a direction, to share the direction information. In the realm of quantum
information, quantum mechanical spin polarized along the direction, �n, has been considered
as a promising candidate for such a natural object and for establishing such a shared direction
[1, 2].

Since the seminal work by Peres and Wootters [3], a considerable effort has been made
in the literature to derive the optimal strategy in sending and receiving direction information
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[4–13]. With a single quantum spin, the optimal procedure for encoding and decoding direction
information is obvious and straightforward—Alice simply uses a spin pointing to �n to encode
the direction, and the optimal measurement strategy for Bob is a standard Stern–Gerlach
measurement, along an arbitrary direction �m [9]. While, for two quantum spins, Gisin and
Popescu showed that antiparallel spins contain more direction information than parallel spins
[10]. Recently, it was shown that antiparallel spins provide the maximal transmission fidelity
[12].

However, all these studies in the transmission of direction information are aimed at the
maximization of the transmission fidelity, namely at determining as accurately as possible the
direction in which the spins are pointing. In the real world, particularly in the presence of
potential eavesdropper (Eve), it is often of great importance to make a security analysis of the
extent to which Eve could have tapped the shared direction information. In this paper, we will
use the information–disturbance tradeoff bound [14] as the basic tool and give a quantitative
bound on Eve’s eavesdropping process.

In fact, the tradeoff between information gain and state disturbance is one of the
fundamental rules in quantum mechanics. There is not a quantum measurement on an
unknown quantum system without introducing any disturbance. There exists a quantitative
tradeoff between information gain and state disturbance [14–21]. More importantly, the
tradeoff which is inherited by quantum mechanics is applicable to any measurement observer,
including Bob and any eavesdropper, and thus imposes a general limit on the information
eavesdropping in quantum communications.

This paper is organized as follows. In section 2, we will give a mathematical description
of the tradeoff bound between information and disturbance for antiparallel spins. In section 3,
we will give a derivation of the optimal tradeoff bound with the group covariant technique and
vector analysis technique. Then, both the optimal group covariant measurement and discrete
positive operator value measure (POVM) measurement are presented in section 4. Finally, we
give a comparison between the tradeoff bound for antiparallel and parallel spins in section 5.
Section 6 follows the conclusion.

2. Information–disturbance bound in quantum measurement of antiparallel spins

Let us now give a general formalism of the information disturbance problem. Assuming that
the state |ψ〉 is homogeneously picked from a given state set �, we just perform a measurement
on this unknown state and then determine what the state will be based on our measurement
outcome. On the one hand, with the measurement outcome, we can obtain some information
gain about the unknown state. On the other hand, after the measurement, the unknown state
will be distorted. Quantum mechanics imposes some constraints on the relation between
the information gain I and the state disturbance D (introduced by quantum measurement).
For a given value of D, there exists an upper bound value for I and no physically available
measurement can be found to beat such a bound. The exact tradeoff bound between I and D
is naturally imposed by quantum mechanics and is what we are mainly concerned with here.

First of all, let us establish a one–one correspondence between the direction �n and
antiparallel quantum spins. As shown by Gisin and Popescu [10], one can use the antiparallel
spins state |�n〉| − �n〉 to encode the unknown direction �n. In order to apply the group covariant
technique in our derivation, for convenience, we will identify Alice’s direction �n with a group
parameter g ∈ G = SU(2). In fact, with a fixed direction �n0, every direction, �n, can be
represented as a result of a certain unitary rotation g acting on a fixed direction �n0:

�n = g�n0. (1)
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In our following calculation, we will rewrite the state |�n〉 as

|�n〉 ≡ |ψ(g)〉 ≡ Ug|ψ(0)〉, (2)

where Ug denotes the unitary group representation for SU(2) and |ψ(0)〉 is the state
corresponding to �n0. For example, one can choose �n0 = (nx, ny, nz) = (0, 0, 1) as the
reference direction and the eigenstate of �n0 · �σ = σz as |ψ(0)〉, i.e. [6]

�n0 · �σ |0〉 = |0〉, |ψ(0)〉 ≡ |0〉. (3)

Following the definitions of equations (2) and (3), the antiparallel spins |�n〉| − �n〉 can be
conveniently expressed with the state |ψ(g)〉|ψ(g)⊥〉, where |ψ(g)⊥〉 denotes the orthogonal
state of |ψ(g)〉. Correspondingly, the set � boils down to a collection of antiparallel states

� = {|�g〉 ≡ |ψ(g)〉|ψ(g)⊥〉, g ∈ SU(2)}. (4)

For the unknown state |�g〉 in equation (4), without loss of generality, we can assume that
the most generalized quantum measurement, i.e. a set of completely positive trace preserving
(CPTP) maps {Er} [22, 23] is performed to retrieve the information of the group parameter
g, namely the unknown direction information �n. The measurement is generally probabilistic:
each measurement outcome r denotes a map from the input state |�g〉 to the output state
�′

rg = Er (|�g〉〈�g|)/prg . Here, prg = Tr[Er (|�g〉〈�g|)] is a normalization factor and
represents the probability with which the measurement outcome r is observed. More precisely,
we introduce here Kraus’s operator-sum theory [23] and give the operator decomposition to
each CP map Er :

Er (|�g〉〈�g|) =
∑

μ

Arμ|�g〉〈�g|A†
rμ, (5)

where Arμ are named as Kraus opeartors. The probability prg then satisfies

prg = Tr[�r |�g〉〈�g|], �r =
∑

μ

A†
rμArμ. (6)

In the literature, the set of operator {�r} is known as the positive operator valued measurement
(POVM). Furthermore, in the following we will make repetitive use of the trace-preserving
condition. This is a prerequisite condition for guaranteeing that the CP maps can be
physically available. The condition that {Er} is trace preserving is equivalent to requiring
that

∑
rμ A

†
rμArμ = 11 ⊗ 11, where we use 11 to denote the identity matrix in the Hilbert Space

of single quantum spin.
Now it is our turn to present the detailed definitions for the information gain I and state

disturbance D. In fact, both the information gain and state disturbance will be evaluated with
fidelities. With the measurement outcome r, one can make some inference rule r → |ψ(r)〉
and infer that |ψ(r)〉|ψ(r)⊥〉 is the quantum state of the input antiparallel spins. Then, the
fidelity—the overlap between |ψ(r)〉 and |ψ(g)〉—is a good figure of merit for the information
gain [19]. Thus, by averaging over all the possible outcome r, the average information Ig can
be given by

Ig =
∑

r

prg|〈ψ(r)|ψ(g)〉|2

=
∑
rμ

Tr[A†
rμArμ|�g〉〈�g|]Tr[|ψ(g)〉〈ψ(g)|ψ(r)〉〈ψ(r)|]. (7)

Similarly, the amount of the disturbance caused by quantum measurement can be quantified
with the fidelity between the output state �′

rg and the input state |ψ(g)〉|ψ(g)⊥〉. We have

Dg = 1 − Fg, Fg = 〈ψ(g)|Tr2[�′
rg]|ψ(g)〉 = Tr[�′

rg|ψ(g)〉〈ψ(g)| ⊗ 11], (8)
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Figure 1. The tradeoff between information gain and state disturbance in the quantum measurement
of antiparallel spins.

where Tr2 denotes a partial trace over the second spins. It should be noted here that we omit
the contribution of the second spin since this complies with the definition in the literature
[10, 11] and can be conveniently incorporated into the comparison with the parallel spins [24]
(see section 5 for more information).

The definitions of Ig and Dg are all dependent on the special choice of parameter g.
In practice, when the group parameter g is randomly chosen from SU(2), we can evaluate
the average information gain and state disturbance by further averaging over all the possible
parameter g, or equivalent, over the set �:

I =
∫

SU(2)

dgIg, D =
∫

SU(2)

dgDg. (9)

In figure 1, we present a mathematical model for the information–disturbance tradeoff
problem. In the following section, we will use the group covariant technique and vector
analysis technique for the optimal Kraus operators {Arμ} and the optimal tradeoff bound
between I and D.

3. Covariant measurement and optimal information–disturbance bound

The group covariant quantum measurement is a special kind of measurement which originates
from the symmetry of input state and has already been proven to be optimal in the quantum
cloning [25–27] process and quantum state estimation [28]. It can be easily shown that
the optimality also preserves in our problem. In fact, for an arbitrary (covariant or non-
covariant) CPTP map E(ρ) = ∑

rμ ArμρA
†
rμ, one can construct a covariant CPTP map

E ′(ρ) = ∫
h
E ′

h(ρ) dh which yields the same amount of information gain and disturbance,
where E ′

h(·) and the guessed state for the result h are chosen to be

E ′
h(ρ) =

∑
rμ

(
UhU

†
r ⊗ UhU

†
r

)
Arμ

(
UrU

†
h ⊗ UrU

†
h

)
ρ
(
UhU

†
r ⊗ UhU

†
r

)
A†

rμ

(
UrU

†
h ⊗ UrU

†
h

)
,

(10)

|ψ(h)〉 = Uh|0〉, (11)

respectively, with the subscript h ∈ SU(2) denoting the measurement result of the continuous
POVM. Therefore, the optimal tradeoff bound for the covariant map is also the optimal bound
for arbitrary maps. Therefore, in searching for the optimal bound between I and D, there will
be no loss of generality if we confine our study within the covariant quantum measurements.

The covariant map in equations (10) and (11), along with its good property E ′
gh(ρ) =

UgEh

(
U

†
gρUg

)
U

†
g , not only guarantees that the measurement achieves its optimal performance

for all the possible state |�g〉, but also simplifies our following computation, considerably.
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Hereafter, we will consider the covariant instrument

Ah = Uh ⊗ UhA0U
†
h ⊗ U

†
h (12)

with the operator A0 denoting a seed of the whole set of Kraus operators. The optimal tradeoff
between information and disturbance can now be obtained by optimizing the operator A0.

Note that the trace-preserving condition now boils down to
∫
h
A

†
hAh = 11 ⊗ 11 which can

be further simplified with Schur’s lemma for reducible group representation [29]:∫
SU(2)

dgUg ⊗ UgA
†
0A0U

†
g ⊗ U †

g = Tr
[
A

†
0A0M1

]
M1 + Tr

[
A

†
0A0M2

]
M2/3, (13)

where M1 = |�−〉〈�−|(|�±〉 = (|01〉 ± |10〉)/√2) denotes the uni-dimensional completely
asymmetric subspace and M2 = 11 ⊗ 11 − M1 denotes the three-dimensional symmetric
subspace. Now the trace-preserving condition boils down to

Tr
[
A

†
0A0M1

] = 1, Tr
[
A

†
0A0M2

] = 3. (14)

With the covariant measurement {Ah}, the integral dg in equation (9) can easily be
obtained. For D, we have

D = 1 −
∫

G

dg

∫
G

dhTr
[
Ah|�g〉〈�g|A†

h|ψ(g)〉〈ψ(g)| ⊗ 11
]

= 1 −
∑
i=0,1

∫
G

dg〈ψ(g)|〈i|A0|�g〉〈�g|A†
0|ψ(g)〉|i〉

= 1 −
∑

i,j,k=0,1

∫
G

dg〈ψ(g)|(|j 〉〈j |)〈i|A0|�g〉〈�g|A†
0|k〉〈k|ψ(g)〉|i〉

= 1 −
∑

i,j,k=0,1

〈ji|A0MjkA
†
0|ki〉, (15)

where the operator

Mjk =
∫

G

dg〈ψ(g)|j 〉 · |�g〉〈�g| · 〈k|ψ(g)〉, j, k ∈ {0, 1} (16)

can be calculated explicitly with the Schur lemma. With some algebra, we obtain that

M00 = (|0〉〈0| ⊗ 11 + 11 ⊗ |1〉〈1|)/12 + |�−〉〈�−|/6, (17)

M11 = (11 ⊗ |0〉〈0| + |1〉〈1| ⊗ 11)/12 + |�−〉〈�−|/6, (18)

M01 = M
†
10 = (|�−〉〈11| − |00〉〈�−|)/6

√
2. (19)

The derivation for I can be done in a similar way, which yields

I =
∫

G

dg

∫
G

dhTr
[
A

†
hAh|�g〉〈�g|

]∣∣〈0|U †
hUg|0〉∣∣2

=
∫

G

dgTr
[
A

†
0A0|�g〉〈�g|

] · 〈ψ(g)|0〉〈0|ψ(g)〉

= Tr
[
A

†
0A0M00

] = 1

3
+

1

6
√

2

(〈�−|A†
0A0|01〉 + 〈01|A†

0A0|�−〉). (20)

Now putting all these results together, the tradeoff problem can be re-formulated with the
following semi-definite programming problem:

MinA0 : 1 −
∑

i,j,k=0,1

〈ji|A0MjkA
†
0|ki〉 (21)

5
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such that

I = Tr
[
A

†
0A0M00

]
, A

†
0A0 � 0, Tr

[
A

†
0A0M1

] = 1, Tr
[
A

†
0A0M2

] = 3.

(22)

To continue our derivation, we will rely on the vector analysis technique and derive the
optimal tradeoff bound. First, we need to introduce a few vectors {�vi = {vi1, vi2}T, vij ∈ C}
(i = 1, 2, . . . , 8, j = 1, 2) such that

A0 =

⎛
⎜⎜⎝

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎞
⎟⎟⎠ =

(�v1 �v2 �v3 �v4

�v5 �v6 �v7 �v8

)
. (23)

This helps to give much simpler expressions to our problem. First of all, the trace-
preserving equation (14) can be reduced to∑

i

|�vi |2 = 4, (24)

|�v2 − �v3|2 + |�v6 − �v7|2 = 2. (25)

Then, it can easily be obtained that

D = 1
2 − 1

12f, I = 1
2 + 1

12g, (26)

with f and g defined by

f = |�v2|2 − |�v3|2 + |�v7|2 − |�v6|2 − |�v1|2 − |�v8|2 + |�v7 − �v6 + �v1|2 + |�v8 + �v2 − �v3|2 − 2, (27)

g = |�v2|2 − |�v3|2 + |�v6|2 − |�v7|2. (28)

The optimization in equation (21) can now be equivalently reduced to looking for a set
of vectors �vi that satisfy the constraints equations (24) and (25) and maximize f for a given
value g.

After some lengthy but not very interesting algebra, one can check that the relation
between f and g actually follows

f � g +
√

24 − 2g2. (29)

This means that for any quantum measurement, the amount of the disturbance D caused
on the quantum states must satisfy

D � 1 − I −
√

− 1
3 + 2I − 2I2, (30)

or equivalently,

Ianti � 1
3 (2 − D +

√
2D(1 − D)). (31)

The bound in equation (30) coincides with our intuition: the more information we
obtain, the more the state has to be disturbed. For the minimal disturbance measurement,
D = 0; we can achieve this by performing the optimal measurements on the second spin
only while leaving the first spin undisturbed. However, the information gain from the optimal
measurement on the second spin can only achieve up to I = 2/3. If one uses more informative
measurement, more disturbance has to be introduced to the input state. In the case of the most
informative measurement, I = 3+

√
3

6 , as shown in [10], we find from equation (30) that

the disturbance as low as D(I) = 3−√
3

6 has to be introduced. For the less informative

measurement, 2/3 < I < 3+
√

3
6 , the disturbance D is given explicitly in equation (30). A plot

of the quantitatively tradeoff is shown with dashed line in figure 2(a).

6
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Figure 2. (a) Comparative plot of information–disturbance tradeoff between antiparallel (dashed
line, equation (31)) and parallel spins (solid line, equation (38)). (b) A higher amount of information
gain 	I = (Ianti−Ipara)/Ipara as a function of disturbanceD. The maximal value of 	I is 5.470%
at D = 0.147.

4. Optimal quantum measurement and discrete POVMS

The optimal quantum operation which achieves the tradeoff bound in equation (31) can be
deduced from the derivation of equation (29). Here we omit the complicated process and list
the main result. In fact, the operators A0 with

�v2

|�v2| = �v3

|�v3| = �v8

|�v8| , �v1 = �v4 = �v5 = �v6 = �v7 = �0 (32)

is one example at hand. Particularly, we can introduce a control parameter θ (0 � θ �
arccos(

√
3/3)):

Aθ = |00〉〈�−| +

√
6 cos θ

2
|00〉〈�+| +

√
3 sin θ |10〉〈11|. (33)

It is straightforward to verify, from equations (15)–(20), that the performance of the covariant
measurement, equation (33), follows

I = 1

2
+

√
3

6
cos θ, (34)

D = 1

2
−

√
3 cos θ

6
−

√
6 sin θ

6
, (35)

and the equality sign in equation (31) can be attained.
Furthermore, by increasing the parameter from 0 to arccos(

√
3/3), the covariant

measurement Ah = Uh ⊗ UhAθU
†
h ⊗ U

†
h interpolates smoothly between the two limiting

case of minimal disturbance measurement and the most informative measurement.
From the covariant operators {Ah} above, one can also construct a set of discrete POVMs

which achieve the same value of I and D. For example, the measurement with only four
Kraus operators can be given by Ai = 1

2Ui ⊗ UiAθU
†
i ⊗ U

†
i (i = 0, 1, 2, 3) with Ui:

U0 = 11, U1 =
√

3
3 11 − iσy, (36)

U2 =
√

3
3 11 + i

√
6

6 σy + i
√

2
2 σx, U3 =

√
3

3 11 + i
√

6
6 σy − i

√
2

2 σx. (37)

It can easily be checked that all these operators satisfy the normalization condition
∑

i A
†
iAi =

11 ⊗ 11 and the optimal tradeoff for measuring antiparallel states follows equation (31). This

7
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indicates that the relation in equation (29) is exactly a tight one and cannot be improved any
more.

5. Comparisons of information–disturbance bounds between antiparallel and parallel
spins

Before concluding, we will give a comparison of the information–disturbance tradeoff between
antiparallel and parallel spins and then present some discussion about the security capacity of
sending direction information via antiparallel spins.

The tradeoff bound for parallel spins has already obtained in [24]:

Ipara = 1
9 (6 − D +

√
2D(3 − 4D)). (38)

Compared with parallel spins, antiparallel spins contain a much higher amount of information
for the same disturbance D:

Ianti � Ipara, (39)

where the equality holds only in the case of minimal disturbance measurement: D = 0.
For ease, a comparative plot of the information–disturbance tradeoff between the case of the
antiparallel spin and the case of the parallel spin is given in figure 2(a). Moreover, we also plot
the amount of enhancement 	I/Ipara = (Ianti − Ipara)/Ipara as a function of disturbance D.
Numerical analysis reveals that the maximal value of 	I can be up to 5.470% at D = 0.147.

Via antiparallel spins, Alice gains a definite improvement in her transmission of direction
information. A more powerful and physically available measurement exists to obtain much
more information than the case of parallel spins. However, this is not complete, particularly
if we keep the security of direction information in mind. Suppose an eavesdroppers Eve
is tapping the quantum channel. It is she (not Bob) who performs the optimal quantum
measurement on the antiparallel spins. Then after observing the measurement outcome r,
the disturbed state is then sent to the legal receiver, Bob. It is not enough to remove all of
Eve’s tapped information simply by checking the average disturbance D and by performing
the privacy amplification protocol [30] for parallel spins. Antiparallel spins improve Eve’s
information too. She could obtain a higher amount of information for the same disturbance.
This means that a higher amount of information should be distilled out if we want to keep the
direction information secure.

6. Conclusions

In this paper, a strict information–disturbance bound for antiparallel spins, along with the
optimal POVM measurement which attains the bound is obtained. Such a result can be of
practical relevance since it imposes a general limit on Eve’s information extraction and her
disturbance on the quantum spins. Finally, we give a comparison between the tradeoff in
antiparallel and parallel cases, which reveals that a higher amount of information should be
distilled out if we use the antiparallel spin for secure transmission of direction information.
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[25] Demkowicz-Dobrzański R, Lewenstein M, Sen(De) A, Sen U and Bruß D 2006 Usefulness of classical

communication for local cloning of entangled states Phys. Rev. A 73 032313
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